Warum sind sie besser als wir?
Home Fächer MathematikMathematikunterricht in den Niederlanden
 
   

Mathematikunterricht (Wiskunde) in den Niederlanden

Von Ursula Schmidt

Am 6. Dezember 2004 wurden die PISA-Ergebnisse vorgestellt. An diesem Morgen sitzen wir in Utrecht beim Frühstück und diskutieren, was schon längst durchgesickert war und jetzt auch offiziell bekannt gegeben wird: Die Niederlande liegen in Mathematik auf Platz 4, Deutschland auf Platz 16.

Nach der ersten TIMSS-Studie wurde 1998 in Deutschland von der Bund-Länder-Kommission der Modellversuch »SINUS« zur Entwicklung des mathematisch-naturwissenschaftlichen Unterrichts ins Leben gerufen. Dieses Projekt wird zur Zeit als »Sinus-Transfer« weitergeführt. Unsere Schule ist daran beteiligt im Rahmen des Projektes »Entwicklung eines alternativen Grundkurskonzeptes«. Seit Beginn ging der Blick der Arbeitsgruppe auch immer in Richtung der in den internationalen Test erfolgreicheren Niederlande. Aufgaben aus den zentralen Abschlussprüfungen wurden übersetzt und bestaunt. In diesen Aufgaben werden komplexe Realsituationen beschrieben, die die Schüler dann mathematisch behandeln müssen. Deutsche Schüler, die nur ihre Kurvendiskussionen abspulen können, hätten derartige Aufgaben nicht lösen können.

»Realistic mathematical education«

Das Konzept in den Niederlanden wurde vom Freudenthal-Institut in Utrecht entwickelt und nennt sich RME (realistic mathematical education). Ausgangspunkt dieses Lernprozesses sind dabei stets Situationen und Beispiele, die die Lernenden als realistisch, vorstellbar und sinnvoll empfinden. Das zugehörige mathematische Wissen wird durch eine schrittweise Mathematisierung aufgebaut, wobei die Schüler selbstständig die Lösung entdecken und entwickeln sollen. Die Aktivitäten der Schüler sind zentrales Element, der Lehrer fungiert eher als Berater.

Aber wie wird all das praktisch im Unterricht umgesetzt? Um dies aus erster Hand zu erleben, hatten Herr Hüllen und ich die Gelegenheit, mit einer kleinen Gruppe von Sinus-Koordinatoren für zwei Tage nach Holland zu fahren. Wir haben Unterricht an je einer Schule in Utrecht und in Terneuzen gesehen und das Freudenthal-Institut besucht.

Anderes Schulsystem in den Niederlanden

Zunächst einmal galt es, das Schulsystem in den Niederlanden zumindest ansatzweise zu verstehen. Die Schulpflicht beginnt für die kleinen Holländer einen Monat nach ihrem vierten Geburtstag. Es gibt also keinen einheitlichen »1. Schultag«. Die Schule beginnt kindergartenartig und geht über in eine gemeinsame Grundschule, die vergleichbar unserer 6. Klasse endet. Die folgende Klasse 1 (entsprechend unserer Klasse 7) besuchen noch alle Kinder gemeinsam, aber die Ergebnisse zentraler Tests führen zu einer Einstufung in einen berufsorientierten Zweig (HAVO) und einen Zweig, der zum Studium führt (VWO). Auch in den folgenden Jahren führen schlechte Ergebnisse im VWO-Zweig zu einer »Hinabstufung« nach HAVO.

Der VWO-Zweig wird mit verschiedenen Schwerpunkten unterrichtet, die mit unterschiedlichen Inhalten im Mathematikunterricht gekoppelt sind: eine Richtung für technische Studiengänge, die eher formalen Unterricht (Wiskunde B1) erhält, und dies etwas abgespeckt (Wiskunde B2) für die Richtung »Natur und Medizin«. Für die angehenden Sprachler, Künstler, also »Nicht-Mathematiker«, gibt es die Wiskunde A nach dem Konzept des Freudenthal-Instituts.

Unterrichtshospitation

Sehr gespannt gehen wir in die Schulen. Wir sehen 4. Klassen (entsprechend unserer Klasse 10) und 6. Klassen (entsprechend unserer Klasse 12, dort die Abschlussklasse). Die Schulgebäude sind großzügig angelegt, jeder Schüler hat sein Schließfach. Die Klassenräume haben auch Fenster zu den Gängen, so dass jeder in den laufenden Unterricht »hineinsehen« kann. Auf jedem Flur ist auch die Schulverwaltung präsent durch Büros von Stufenkoordinatoren. Auf den Gängen hängen viele Lernplakate. Jeder Lehrer unterrichtet in einem festen Raum, den er selbst ausgestaltet hat. Die Schüler müssen nach jeder Stunde den Raum wechseln. Die Räume sind ziemlich groß. Es soll auch Kurse mit 30 Schülern geben, aber wir sehen nur Lerngruppen mit 14 bis 20 Schülern. Die Schüler haben 4 Stunden Mathematik pro Woche. Alle Schüler haben grafikfähige Taschenrechner. In Terneuzen sehe ich auch eine Stunde im Computerraum. Dieser war nur für Unterricht bestimmt, aber es gab auch einen Raum, den die Schüler für freies Arbeiten und Internet-Recherche nutzen können.

Der Unterricht beginnt. Unsere Erwartungen sind hoch — was können wir besser machen?

Fast alle Stunden sind nach einem festen Schema aufgebaut: Zu Beginn steht ein kurzer Lehrervortrag von höchstens 10 Minuten. (Bei den Inspektionen der Lehrer wird gemessen, ob diese Phase nicht zu lang ist.) Der Lehrervortrag bemüht sich nicht um Motivation oder um eine Anwendungssituation, sondern vermittelt kurz und knapp ein paar Fakten.

Danach lösen die Schüler Aufgaben aus dem Schulbuch. Sie haben ein kleines Heft mit den Ergebnissen und im Klassenraum stehen Ordner mit ausführlichen Lösungen, wo sie etwas nachschlagen können. Wenn ihnen etwas nicht klar ist, fragen sie den Lehrer. Zu Hause können sie die Lösungen im Internet einsehen.

Die erste Stunde, die wir in Utrecht sehen, ist von der Lehrerin schlecht vorbereitet: Der Vortrag und das erste Beispiel, das die Schüler an Hand des Buches mit den Grafikrechnern bearbeiten sollen, passen nicht zusammen. Die Schüler sind verwirrt. Die Lehrerin versucht zu erklären, dabei unterläuft ihr ein gravierender Fehler; die Verwirrung steigt. Ein Schüler, der die richtige Lösung erfasst hat, erklärt sie. Es schellt und die Schüler zeigen uns einen Plan, auf dem genau aufgelistet ist, welche Aufgaben in welcher Woche bearbeitet werden müssen. In dieser Woche ist noch viel zu bearbeiten, aber die Schüler sagen, dass sie alle fehlenden Aufgaben zu Hause erledigen werden. (Anmerkung: In den Niederlanden ist Ganztagsunterricht bis 16 Uhr.)

In der zweiten Stunde, die wir sehen, werden zunächst die Noten eines Tests vorgelesen, der Test selbst wird nicht zurückgegeben. Die Arbeitsdisziplin dieser Klasse ist sehr schlecht, eigentlich arbeiten nur zwei Tischgruppen. Viele Schüler beschäftigen sich mit völlig anderen Dingen, während der Lehrer am Pult Tests korrigiert und kaum eingreift. Direkt von uns auf ihr Verhalten angesprochen, erklärt eine hier völlig unaufmerksame Schülerin aber (in sehr gutem Englisch!), dass sie die Aufgaben, die sie in der Schule nicht bearbeitet, zu Hause lösen wird, und zwar ohne Hilfe.

Warum gehen die Schüler überhaupt zur Schule?

Die Besucher aus Deutschland sind nun ebenfalls verwirrt: Warum gehen die Schüler überhaupt zur Schule – und sind doch besser als wir?

Anders ist die Atmosphäre an der Schule in Terneuzen. Diese Schule stellt sich selbst den Anspruch »Qualität« und wir haben das Gefühl eines deutlich höheren Engagements der Lehrer.

Ich sehe als erstes eine Stunde im Computerraum. Die Universität Amsterdam hat Programmpakete für den Einsatz in Schulen entwickelt und in dieser Stunde haben die Schüler eine Einführung in das Paket zur Statistik. Diese Stunde verläuft, wie eine vergleichbare Stunde auch bei uns verlaufen würde: Die Schüler probieren spielerisch alle Module aus und werden zwischendurch von der Lehrerin angehalten, die zielgerichteten Aufgaben auch noch zu lösen.

Ungewöhnlicher ist die nächste Stunde: Vorher hat ein landesweiter »Tag der Mathematik« stattgefunden und die Lehrerin bespricht jetzt mit einzelnen Gruppen aus der Klasse die Projektarbeiten, die an diesem Tag entstanden sind. Bewertet wird nicht nur das Produkt aus mathematischer Sicht, sondern auch die Präsentation und die Zusammenarbeit in der Gruppe. Währenddessen arbeitet der Rest der Klasse weiter die Aufgaben aus dem Schulbuch zum laufenden Stoff (Raumgeometrie) durch. Die drei besten Projektgruppen werden auf den Flur geschickt um sich darüber zu verständigen, welcher Beitrag für den landesweiten Wettbewerb eingereicht werden soll. »Flur« heißt dabei eine größere Halle, in der auch Tische und Stühle stehen, mit Stellwänden dazwischen. In dieser Halle müssen die Schüler mindestens eine Stunde pro Woche selbstständig arbeiten.

Insgesamt wird wohl auch viel differenzierter gearbeitet als bei uns: schwächere Schüler bekommen z.B. extra Unterricht in Kleingruppen, während gute Schüler eigenständig an Projekten arbeiten.

Wir sehen dann eine Stunde, in der mit einer leistungsschwachen Klasse die Probleme besprochen werden, die die Schüler mit den Aufgaben hatten, die sie vorher selbstständig bearbeitet haben.

 

Und dann folgt eine Stunde, die deutlich macht, was das Konzept leisten kann, wenn es gut umgesetzt wird: Jede Tischgruppe bekommt ein kompliziert geformtes Bauklötzchen mit dem Auftrag, die Oberfläche und das Volumen zu berechnen. Die Klötzchen sind alle verschieden. Die Schüler beginnen zu zeichnen, zu messen, zu rechnen, im Buch nachzuschlagen... Der Lehrer beschränkt sich darauf, die Ansätze abzuschätzen und Fragen zu beantworten. Schüler, die schneller zum Ergebnis kommen, bearbeiten zum Schluss noch ein anderes Problem. Es gibt keinen Ergebnisvergleich, keine »Musterlösung«.

 

Dieser Lehrer beantwortet die Frage Warum sind Sie besser als wir? mit einem klaren »Es liegt am selbstständigen Arbeiten.«

Zurück am FSG

8. Dezember 2004, zurück am FSG: Der Grundkurs Mathematik, der seit Beginn des Schuljahres ein Projekt zum selbstständigen Lernen durchführt, hatte für die Doppelstunde in meiner Abwesenheit eine Aufgabe mit Computereinsatz. Der Kollege, der den Kurs in den Informatikraum gelassen hat, berichtet mir, dass ein Großteil der Schüler entweder nach Hause gegangen ist oder im Internet gesurft hat. In der folgenden Stunde ist die Aufgabe überwiegend nicht erledigt, statt dessen gibt es die üblichen Sprüche: »Zu schwer!« – »Konnte ich nicht.« – »Nie wird uns was erklärt.« – »Wann bekommen wir wieder richtigen Unterricht?«

Warum also sind sie besser als wir?

Für mich war der auffälligste Unterschied, dass für die niederländischen Schüler jederzeit feststand, dass sie bis zu einem vorgegebenen Zeitpunkt bestimmte Aufgaben bearbeitet haben und bestimmte Standards erreicht haben müssen. Was im Unterricht nicht erledigt wird, wird zu Hause gemacht und zwar alleine, ohne Nachhilfelehrer. Ein »Eintrichtern« wird nicht erwartet.

Die Verantwortung für den Lernprozess liegt also eindeutig beim Schüler.

Haben wir unsere Schüler zu sehr verwöhnt? Fordern wir nicht selbstverständlich genug eine gewisse eigenständige Leistung ein?

   

Stand: 27.01.2005
Artur Weinhold

Home Fächer MathematikMathematikunterricht in den Niederlanden